What do Materials Engineers Do

Materials Engineers

Materials engineers are involved in the development, processing, and testing of the materials used to create a range of products, from computer chips and aircraft wings to golf clubs and snow skis. They work with metals, ceramics, plastics, semiconductors, and composites to create new materials that meet certain mechanical, electrical, and chemical requirements. They also are involved in selecting materials for new applications. Materials engineers have developed the ability to create and then study materials at an atomic level, using advanced processes to replicate the characteristics of those materials and their components with computers. Most materials engineers specialize in a particular material. For example, metallurgical engineers specialize in metals such as steel, and ceramic engineers develop ceramic materials and the processes for making them into useful products such as glassware or fiber-optic communication lines.

Work Environment

Materials engineers held about 25,100 jobs in 2020. The largest employers of materials engineers were as follows:

  • Transportation equipment manufacturing - 16%
  • Engineering services - 12%
  • Computer and electronic product manufacturing - 8%
  • Primary metal manufacturing - 7%
  • Research and development in the physical, engineering, and life sciences - 6%

Materials engineers often work in offices where they have access to computers and design equipment. Others work in factories or research and development laboratories. Materials engineers may work in teams with scientists and engineers from other backgrounds.

Work Schedules

Materials engineers generally work full time. Some materials engineers work more than 40 hours per week.

Education & Training Required

A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a natural science or mathematics occasionally may qualify for some engineering jobs, especially in specialties that are in high demand. Most engineering degrees are granted in electrical and electronics engineering, mechanical engineering, and civil engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those which more closely match their interests.

Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and the physical and life sciences. Many programs also include courses in general engineering. A design course, sometimes accompanied by a computer or laboratory class or both, is part of the curriculum of most programs. Often, general courses not directly related to engineering, such as those in the social sciences or humanities, also are required.

In addition to the standard engineering degree, many colleges offer 2-year or 4-year degree programs in engineering technology. These programs, which usually include various hands-on laboratory classes that focus on current issues in the application of engineering principles, prepare students for practical design and production work, rather than for jobs that require more theoretical and scientific knowledge. Graduates of 4-year technology programs may get jobs similar to those obtained by graduates with a bachelor's degree in engineering. Engineering technology graduates, however, are not qualified to register as professional engineers under the same terms as graduates with degrees in engineering. Some employers regard technology program graduates as having skills between those of a technician and an engineer.

Graduate training is essential for engineering faculty positions and some research and development programs, but is not required for the majority of entry-level engineering jobs. Many experienced engineers obtain graduate degrees in engineering or business administration to learn new technology and broaden their education. Numerous high-level executives in government and industry began their careers as engineers.

The Accreditation Board for Engineering and Technology (ABET) accredits college and university programs in engineering and engineering technology. ABET accreditation is based on a program's faculty, curriculum, and facilities; the achievement of a program's students; program improvements; and institutional commitment to specific principles of quality and ethics. Graduation from an ABET-accredited program may be required for engineers who need to be licensed.

Although most institutions offer programs in the major branches of engineering, only a few offer programs in the smaller specialties. Also, programs with the same title may vary in content. For example, some programs emphasize industrial practices, preparing students for a job in industry, whereas others are more theoretical and are designed to prepare students for graduate work. Therefore, students should investigate curricula and check accreditations carefully before selecting a college.

Admissions requirements for undergraduate engineering schools include a solid background in mathematics (algebra, geometry, trigonometry, and calculus) and science (biology, chemistry, and physics), in addition to courses in English, social studies, and humanities. Bachelor's degree programs in engineering typically are designed to last 4 years, but many students find that it takes between 4 and 5 years to complete their studies. In a typical 4-year college curriculum, the first 2 years are spent studying mathematics, basic sciences, introductory engineering, humanities, and social sciences. In the last 2 years, most courses are in engineering, usually with a concentration in one specialty. Some programs offer a general engineering curriculum; students then specialize on the job or in graduate school.

Some engineering schools have agreements with 2-year colleges whereby the college provides the initial engineering education and the engineering school automatically admits students for their last 2 years. In addition, a few engineering schools have arrangements that allow students who spend 3 years in a liberal arts college studying preengineering subjects and 2 years in an engineering school studying core subjects to receive a bachelor's degree from each school. Some colleges and universities offer 5-year master's degree programs. Some 5-year or even 6-year cooperative plans combine classroom study with practical work, permitting students to gain valuable experience and to finance part of their education.

Certifications Needed

All 50 States and the District of Columbia require licensure for engineers who offer their services directly to the public. Engineers who are licensed are called professional engineers (PEs). This licensure generally requires a degree from an ABET-accredited engineering program, 4 years of relevant work experience, and completion of a State examination. Recent graduates can start the licensing process by taking the examination in two stages. The initial Fundamentals of Engineering (FE) examination can be taken upon graduation. Engineers who pass this examination commonly are called engineers in training (EITs) or engineer interns (EIs). After acquiring suitable work experience, EITs can take the second examination, called the Principles and Practice of Engineering exam. Several States have imposed mandatory continuing education requirements for relicensure. Most States recognize licensure from other States, provided that the manner in which the initial license was obtained meets or exceeds their own licensure requirements. Many civil, mechanical, and chemical engineers are licensed PEs. Independently of licensure, various certification programs are offered by professional organizations to demonstrate competency in specific fields of engineering.

Other Skills Required

Engineers should be creative, inquisitive, analytical, and detail oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are becoming increasingly important as engineers interact more frequently with specialists in a wide range of fields outside engineering.

Engineers who work for the Federal Government usually must be U.S. citizens. Some engineers, particularly nuclear engineers and aerospace and other engineers working for defense contractors, may need to hold a security clearance.

How to Advance

Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some eventually may become engineering managers or enter other managerial or sales jobs. In sales, an engineering background enables them to discuss a product's technical aspects and assist in product planning, installation, and use.

Numerous professional certifications for engineers exist and may be beneficial for advancement to senior technical or managerial positions. Many certification programs are offered by the professional societies listed as sources of additional information for engineering specialties at the end of this statement.

Job Outlook

Employment of materials engineers is projected to grow 8 percent from 2020 to 2030, about as fast as the average for all occupations.

About 1,800 openings for materials engineers are projected each year, on average, over the decade. Many of those openings are expected to result from the need to replace workers who transfer to different occupations or exit the labor force, such as to retire.

Employment

About half of all materials engineers work in manufacturing industries, where they develop and create new materials and manufacturing processes. Developing new materials or improving existing ones often requires collaboration with various engineering disciplines, such as mechanical, electrical, and chemical. As demand continues to increase for materials use, demand for employment also will increase. A greater focus on environmental sustainability also may create demand for materials engineers.

Earnings

The median annual wage for materials engineers was $98,300 in May 2021. The median wage is the wage at which half the workers in an occupation earned more than that amount and half earned less. The lowest 10 percent earned less than $60,580, and the highest 10 percent earned more than $161,080.

In May 2021, the median annual wages for materials engineers in the top industries in which they worked were as follows:

  • Computer and electronic product manufacturing - $112,330
  • Research and development in the physical, engineering, and life sciences - $106,430
  • Transportation equipment manufacturing - $102,080
  • Engineering services - $86,980
  • Primary metal manufacturing - $82,380

Most materials engineers work full time. Some materials engineers work more than 40 hours per week.

Academic Programs of Interest


Ceramic Engineering
Ceramic engineering is the technology of manufacturing and usage of ceramic materials. Many engineering applications benefit from ceramics characteristics as a material. The characteristics of ceramics have garnered attention from engineers across the world, including those in the fields: Electrical Engineering, Materials Engineering, Chemical Engineering, Mechanical Engineering, and many others. Highly regarded for being resistant to heat, ceramics can be used for many demanding tasks... more
Chemical Engineering
Chemical engineering is the branch of engineering that deals with the application of physical science (e.g. chemistry and physics), with mathematics, to the process of converting raw materials or chemicals into more useful or valuable forms. As well as producing useful materials, chemical engineering is also concerned with pioneering valuable new materials and techniques; an important form of research and development. A person employed in... more
Geological Engineering
Geological engineering is the engineering science of applying engineering principles to the study of geological materials as part of the engineering design of facilities including roads, tunnels, and mines especially as related to minerals and mineral products. Some see it as a merging of the disciplines of geology and engineering and materials science, but, while it includes aspects of all, it has several specializations unique... more
Materials Science
Materials science is an interdisciplinary field involving the properties of matter and its applications to various areas of science and engineering. This science investigates the relationship between the structure of materials and their properties. It includes elements of applied physics and chemistry, as well as chemical, mechanical, civil and electrical engineering. With significant media attention to nanoscience and nanotechnology in the recent years, materials science... more
Metallurgical Engineering
Metallurgical Engineering is a domain of materials science that studies the physical and chemical behavior of metallic elements, their intermetallic compounds, and their compounds, which are called alloys. It is also the technology of metals: the way in which science is applied to their practical use. In production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products.... more
Mineral Engineering
Mineral Engineering is a branch of Engineering Geoscience, the science of man's interaction with the earth: the use of math, physics, geology and environmental science to understand and shape the natural world around us. Mineral Engineering is the interdisciplinary study, development and design of subsurface space for a host of applications: mining, oil and gas exploration, hydroelectric projects, tunnels and subways, subsurface storage facilities, underground... more
Textile Engineering
Textile engineering (TE) or textile technology deals with the application of scientific and engineering principles to the design and control of all aspects of fiber, textile, and apparel processes, products, and machinery. These include natural and man-made materials, interaction of materials with machines, safety and health, energy conservation, and waste and pollution control. Additionally, textile engineers are given training and experience in plant design and... more