What do Geoscientists and Hydrologists Do

Geoscientists and Hydrologists

Geoscientists and hydrologists study the composition, structure, and other physical aspects of the Earth, and the Earth's geologic past and present by using sophisticated instruments to analyze the composition of earth, rock, and water. Many geoscientists and hydrologists help to search for natural resources such as groundwater, minerals, metals, and petroleum. Others work closely with environmental and other scientists to preserve and clean up the environment.

Geoscientists usually study and work in one of several closely related geosciences fields, including geology, geophysics, and hydrology. Geologists study the composition, processes, and history of the Earth. They try to find out how rocks were formed and what has happened to them since their formation. They also study the evolution of life by analyzing plant and animal fossils. Geophysicists use the principles of physics, mathematics, and chemistry to study not only the Earth's surface, but also its internal composition, ground and surface waters, atmosphere, oceans, and magnetic, electrical, and gravitational forces. Hydrologists study the quantity, distribution, circulation, and physical properties of water and the water cycle.

Within these major geoscience fields, there are numerous subspecialties. For example, petroleum geologists map the subsurface of the ocean or land as they explore the terrain for oil and gas deposits. They use sophisticated instrumentation and computers to interpret geological information. Engineering geologists apply geologic principles to the fields of civil and environmental engineering, offering advice on major construction projects and assisting in environmental remediation and natural hazard-reduction projects. Mineralogists analyze and classify minerals and precious stones according to their composition and structure, and study the environment surrounding rocks in order to find new mineral resources. Sedimentologists study the nature, origin, distribution, and alteration of sediments, such as sand, silt, and mud. These sediments may contain oil, gas, coal, and many other mineral deposits. Paleontologists study fossils found in geological formations to trace the evolution of plant and animal life and the geologic history of the Earth. Stratigraphers examine the formation and layering of rocks to understand the environment which formed them. Volcanologists investigate volcanoes and volcanic phenomena to try to predict the potential for future eruptions and hazards to human health and welfare. Glacial geologists study the physical properties and movement of glaciers and ice sheets. Geochemists study the nature and distribution of chemical elements in groundwater and earth materials.

Geophysicists specialize in areas such as geodesy, seismology, and magnetic geophysics. Geodesists study the Earth's size, shape, gravitational field, tides, polar motion, and rotation. Seismologists interpret data from seismographs and other geophysical instruments to detect earthquakes and locate earthquake-related faults. Geomagnetists measure the Earth's magnetic field and use measurements taken over the past few centuries to devise theoretical models that explain the Earth's origin. Paleomagnetists interpret fossil magnetization in rocks and sediments from the continents and oceans to record the spreading of the sea floor, the wandering of the continents, and the many reversals of polarity that the Earth's magnetic field has undergone through time. Other geophysicists study atmospheric sciences and space physics.

Hydrologists often specialize in either underground water or surface water. They examine the form and intensity of precipitation, its rate of infiltration into the soil, its movement through the Earth, and its return to the ocean and atmosphere. Hydrologists use sophisticated techniques and instruments. For example, they may use remote sensing technology, data assimilation, and numerical modeling to monitor the change in regional and global water cycles. Some surface-water hydrologists use sensitive stream-measuring devices to assess flow rates and water quality.

Oceanographers use their knowledge of geosciences, in addition to biology and chemistry, to study the world's oceans and coastal waters. They study the motion and circulation of ocean waters; the physical and chemical properties of the oceans; and how these properties affect coastal areas, climate, and weather.

Geoscientists in research positions with the Federal Government or in colleges and universities frequently are required to design programs and write grant proposals in order to fund their research. Geoscientists in consulting jobs face similar pressures to market their skills and write proposals so that they will have steady work.

Work Environment

Geoscientists held about 29,000 jobs in 2020. The largest employers of geoscientists were as follows:

  • Architectural, engineering, and related services - 26%
  • Management, scientific, and technical consulting services - 17%
  • Mining, quarrying, and oil and gas extraction - 16%
  • Federal government, excluding postal service - 8%
  • State government, excluding education and hospitals - 8%

Geoscientists work in states that have a prominence of oil and gas activities. Workers in natural resource extraction fields usually work as part of a team, with other scientists and engineers. For example, they may work closely with petroleum engineers to find and develop new sources of oil and natural gas.

Most geoscientists split their time between working in the field, in laboratories, and in offices. Fieldwork can take geoscientists to remote locations all over the world. For example, oceanographers may spend months at sea on a research ship, and petroleum geologists may spend long periods in remote areas while doing exploration activities. Extensive travel and long periods away from home can be physically and psychologically demanding. Having outdoor skills, such as camping and hiking skills, may be useful.

Work Schedules

Most geoscientists work full time. They may work additional or irregular hours when doing fieldwork. Geoscientists travel frequently to meet with clients and to conduct fieldwork.

Education & Training Required

A bachelor's degree is adequate for a few entry-level positions, but most geoscientists and hydrologists need a master's degree, which is the preferred educational requirement for most research positions in private industry, Federal agencies, and State geological surveys. A Ph.D. is necessary for most high-level research and college teaching positions, but is generally not required for other jobs.

Many colleges and universities offer bachelor’s and graduate degrees in the geosciences. Traditional geoscience courses emphasizing classical geologic methods and topics (such as mineralogy, petrology, paleontology, stratigraphy, and structural geology) are important for all geoscientists. People who study physics, chemistry, biology, mathematics, engineering, or computer science may also qualify for some geoscience positions if their course work includes geology.

Most universities do not offer degrees in hydrology, but instead offer concentrations in hydrology or water studies in their geoscience, environmental science, or engineering departments. Students interested in hydrology should take courses in the physical sciences, geophysics, chemistry, engineering science, soil science, mathematics, aquatic biology, atmospheric science, geology, oceanography, hydrogeology, and the management or conservation of water resources.

Certifications Needed

A number of States require geoscientists and hydrologists who offer their services directly to the public to obtain a license from a State licensing board. Licensing requirements vary by State but typically include education and experience requirements and a passing score on an examination. In States that do not require a license, workers can obtain voluntary certifications. For example, the American Institute of Hydrology offers certification programs in professional hydrology that have similar requirements to State licensure programs.

Other Skills Required

Computer skills are essential for prospective geoscientists and hydrologists; students who have experience with computer modeling, data analysis and integration, digital mapping, remote sensing, and Geographic Information Systems (GIS) will be the most prepared entering the job market. Knowledge of the Global Positioning System (GPS)—a locator system that uses satellites—has also become essential. Some employers seek applicants with field experience, so a summer internship is often helpful.

Because geoscientists and hydrologists usually work as part of a team with other geoscientists and with environmental scientists, engineers, and technicians, they must have good interpersonal skills. Strong oral and written communication skills also are important because writing technical reports and research proposals and explaining research results in person are important aspects of the work. Some jobs, particularly for petroleum geologists, require foreign travel, and for these positions knowledge of a second language is beneficial.

These workers must be inquisitive, able to think logically, and capable of complex analytical thinking, including spatial visualization and the ability to infer conclusions from sparse data. Geoscientists and hydrologists involved in fieldwork must have physical stamina.

How to Advance

Geoscientists and hydrologists often begin their careers in field exploration or as research assistants or technicians in laboratories or offices. As they gain experience, they take on more complex and difficult assignments. Eventually, some are promoted to project leader, program manager, or to a senior research position. Those who choose to work in management will spend more time scheduling, budgeting, and reporting to top executives or clients.

Job Outlook

Employment of geoscientists is projected to grow 7 percent from 2020 to 2030, about as fast as the average for all occupations.

About 3,100 openings for geoscientists are projected each year, on average, over the decade. Many of those openings are expected to result from the need to replace workers who transfer to different occupations or exit the labor force, such as to retire.

Employment

The need for energy, environmental protection, and responsible land and resource management is expected to spur demand for geoscientists.

Geoscientists will be involved in discovering and developing sites for traditional and alternative energy sources. For example, geoscientists study wind speeds and patterns to determine sites that are suitable for wind turbines. The increased use of and demand for alternative energy should lead to more jobs for these workers.

Earnings

The median annual wage for geoscientists was $83,680 in May 2021. The median wage is the wage at which half the workers in an occupation earned more than that amount and half earned less. The lowest 10 percent earned less than $48,880, and the highest 10 percent earned more than $172,490.

In May 2021, the median annual wages for geoscientists in the top industries in which they worked were as follows:

  • Mining, quarrying, and oil and gas extraction - $119,210
  • Federal government, excluding postal service - $103,960
  • State government, excluding education and hospitals - $81,700
  • Architectural, engineering, and related services - $77,750
  • Management, scientific, and technical consulting services - $76,270

Most geoscientists work full time. They may work additional or irregular hours when doing fieldwork. Geoscientists travel frequently to meet with clients and to conduct fieldwork.

Academic Programs of Interest


Environmental Science
Environmental science is the study of interactions among physical, chemical, and biological components of the environment. It is an interdisciplinary science overlapping the categories in Natural sciences, Engineering sciences and Social sciences. In nature, Environmental science focuses on pollution and degradation of the environment related to human activities and their impact on biodiversity and sustainability. As an interdisciplinary field, environmental science also applies knowledge from... more